Cauchy’s integral formula defines analytic function evaluation with path integral with denominator translation at evaluation point (\(\frac{1}{z-a}\)).
\(f(a) = \frac{1}{2\pi i} \oint_\gamma \frac{f(z)}{z-a}\, dz\,\)
\(f^{(n)}(a) = \frac{n!}{2\pi i} \oint_\gamma \frac{f(z)}{\left(z-a\right)^{n+1}}\, dz\)
Cauchy’s integral formula is a limit of path.
\(\lim_{r \rightarrow 0}\gamma : \lvert z-z_{0} \rvert = r\)
Taylor series evaluated a analytic function by approximation at an open disc \(D(z_{0}, r)\).
\(f(x) = \sum_{n=0}^\infty a_n(x-b)^n\)
\(\frac{f^{(n)}(b)}{n!} = a_n\)

The presence of primitive function is a strong condition that makes a function is analytic in a disc \(D(a,R)\). The meaning is the presence of primitive function is confusing at first to me. If a function is integrable, then integration value and a primitive function can be determined. But in complex analysis this is not the case. In real analysis, the integral interval \([a, b]\) is unique, but in complex analysis the integral interval should be determined by line path \(\Gamma = g(x)\).

A norm of linear transformation \(\Lambda : X \rightarrow Y\) is defined by \(\| \Lambda \| = \sup \{ \| \Lambda(x) \|:x \in X, \|x\| \le 1 \}\). We can give a norm to a space or a set. A norm determines the size of a vector in the function space. The way of measure the size of a vector gives important properties of the space like boundness, completeness or orthogonality.

The Fourier series represents a periodic function as a descrete vectors. The Fourier transformation turns a time domain non-periodic function into a frequency domain continuous function. The Fourier series and transformation change a single time base \(t\) into infinite frequency basis \(e^{inx}\) or \(e^{iwx}\). The function on infinite basis domain can be represented by a vector or a function of basis domain \(v_{n}\) or \(f(w)\). This is a coefficients of Fourier series or Fourier transformation.

Convolution is a vector operation on two vectors.
\[ Convolution \\ c * d = d*c \\ (c*d)_n = \Sigma_{i+j} c_i d_j = \Sigma_i c_i d_{n-i}.\] This is multiplying polynomials. The parameters of multiplied polynomial become convolution of two polynomials. Fourier transformation expands x base to infinite exponential basis \(e^{iwk}\). The multiplication on x (time) space becomes convolutionn on k (frequency) space.
If time space is periodic, its Fourier transformation is discrete i.

The optimization problem have two components that are objective function \(f_0 : \mathbb R ^n \rightarrow \mathbb R\) and the constraints. The objective function and constraints keep in check each other and make balance at saddle point i.e. optimal point. The dual (Lagrange) problem of the optimal problem also solve the optimization problem by making low boundary.
The dual problem can be explained as a conjugate function \(f^* = \sup (x^Ty-f(x))\).

The purpose of approximation is finding optimal point \(x^*\) i.e. \(\nabla F(x^*) = 0\). We need a step/search direction \(\Delta x\) and step size \(t\). Taylor approximation has polynomial arguments that is a step and parameters of derivatives at the start point. The first degree of Taylor approximation has one adding term from start point \((x_0, F(x_0))\). The adding term \(\nabla F(x) \Delta x\) is consistent with a parameter (gradient \(\nabla F(x)\)) and a argument (step \(\Delta x\)).

The meaning of \(A^{T}\)
Steady state equilibrium Graph Laplacian matrix \(A^{T}CA\) Differential equation and Laplacian matrix Derivative is a graph without branch. Row space and column space are dual. \(A\) and \(A^{T}\) are dual. ref) Linear algebra and learning from data, Part IV, Gilbert Strang

Differential equations describe the change of state. The change relates to the state. The solutions of the differential equations are the status equations. The initial conditions set the time \(t\) and status \(y\). The boundary conditions are the value of boundary \(y_0\) and \(y_1\).
\(dy \over dt\) \(= ay + q(t)\) starting from \(y(0)\) at $t=0. inital conditions \(t = 0\) and \(y=1\)
\(q(t)\) is a input and \(y(t)\) is a response.

Information relates to uncertainty. The Shannon information content of an outcome \(x\) is \(h(x)=-log_{2}P(x)\). The rare event has larger information than a common event. The unit of information is a bit (binary digit). Coding is a mapping from an outcome of an ensemble to binary digits \(\{0,1\}^+\). A symbol code is a code for a single ensemble. A block code is a code for a sequence ensemble. A set of sequences of the ensemble has a typical subset.

Powered by the Academic theme for Hugo.